

Understand the Plan: Developing Methods to Report Bacteria TMDL Credit

Stephanie Hanses and Mira Micin

CWEA Stormwater Committee Spring Seminar – June 8, 2016

Overview

- Background
- Bacteria reduction approaches
- Metrics & reporting
- Achieving a TMDL & setting better goals
- Conclusion

Virginia MS4 Permits

- Phase II General Permit
 - 106 Active Permits
- Phase I Individual Permits
 - 11 Active Permits

Virginia TMDL Process

- Impaired Waters
- Total Maximum Daily Loads
- TMDL Implementation Plans
 - Developed by DEQ on a watershed scale
- TMDL Action Plans
 - Developed by individual municipalities

Local TMDL Action Plans

- Phase II Permit
 - Year 2 TMDLs approved prior to July 9, 2008
 - Year 3 TMDLs approved between July 9, 2008 and July 1, 2013
- Phase I Permits
 - Year 2 TMDLs approved prior to permit approval date

Other TMDL Reporting Requirements

- Annual reporting
 - Progress toward goals defined in Action Plan
 - Monitoring results
- Estimated date for achieving waste load allocations
 - Required at reapplication for Phase II Permits
 - Required in Phase I Action Plans

What are Bacteria TMDLs?

- Describes the total loading a water can receive while still maintaining its designated use
- Sources
 - Human
 - Pet
 - Wildlife
 - Livestock

Pollutants of Concern

- Fecal indicator bacteria
 - Fecal Coliform for shellfish waters
 - E. coli for freshwater
 - Enterococci for transitional waters
- Testing methodology
 - Single sample maximums
 - Geometric means

VA Water Quality Criteria

Indicator	Geometric Mean	Single Sample Maximum		
Freshwater (per 100 mL)				
E. coli	126	235		
Transition and Saltwater (per 100 mL)				
Enterococci	35	104		

Reference: Code of Virginia 9VAC25-260-170 (2010)

MD Water Quality Criteria

	Geometric Mean	Single Sample Maximum				
Indicator	All Areas	Frequent Contact	Moderate Contact	Occasional Contact	Infrequent Contact	
Freshwater (per 100 mL)						
Enterococci	33	61	78	107	151	
E. coli	126	235	298	410	576	
Marine Water (per 100 mL)						
Enterococci	35	104	158	275	500	

Reference: Code of Maryland 26.08.02.03-3 (2014)

Approaches to Reduce Bacteria

- Focus on bacteria sources
 - Coordination with utilities
 - Programmatic measures
- Wet weather reductions
 - Runoff Reduction
 - Environmental site designs
- Stream Restoration

Coordination with Utilities

- Primary human sources
 - Straight pipes
 - Septic tanks
 - |&|
 - Overflows
- Usually not operated by MS4

Programmatic Measures

GOOD to **DO**

Never dispose of fats, oils and down the drain.

Keep your drains clog-free and practicing the following good

Can the Grease O Pour used cooking grease into an empty,

heat-safe container, such as a soup can, and O store it Once solidified, O toss the can int

Scrape the Plate

Wipe all pots, pans, dishes and cooking utensils with a paper

Start at Home

Every day activities greatly affect the health of our waterways. This guide contains tips on how you can help protect our waterways, starting at home.

What is Stormwater Runoff?

Stormwater runoff occurs when rain or melted snow flows over parking lots, sidewalks, streets, or any other surface that cannot absorb water. As stormwater runoff moves, it picks up dirt, trash, oil, grease, fertilizers, and other pollutants and carries them into the storm drain system, which empties directly into local waterways.

Approaches to Reduce Bacteria – Runoff Reduction

- Bacteria removal mechanisms¹
 - UV Radiation
 - Predation
 - Sedimentation
 - Exposure To Air
 - Filtration

Example BMP Descriptions and Theoretical Removal Mechanisms ²			
ВМР Туре	Treatment Mechanisms Relevant to Pathogen Removal		
Dry Detention Basin	Drying, sun exposure, sedimentation		
Wet pond	Sun exposure, sedimentation		
Stormwater Wetland	Sun exposure, sedimentation, some drying		
Sand Filter	Drying, sedimentation, filtration		
Bioretention	Drying, sun exposure, sedimentation, filtration		
Grassed Swales	Sedimentation, sun exposure, drying		
Proprietary Devices	Varies based on manufacturer: normally sedimentation and sometimes filtration		

¹Pathogens in Urban Stormwater Systems ²Urban Waterways Removal of Pathogens in Stormwater

A Runoff Reduction Case Study

Wetland 1

Wetland 2

Study referenced from the Journal of Environmental Engineering December 2009. Article Indicator Bacteria Removal in Storm-Water Best Management Practices in Charlotte, North Carolina written by J.M. Hathaway, W.F. Hunt, and S. Jadlocki

Developing Metrics

Developing Metrics

- Semi-quantitative approach
 - Degree of implementation
 - Measurable goals
- Programs may be operated by other municipal departments

Developing Metrics

Tracking goals for programmatic measures

			Measure (Select One
Measure		2014	
			Civic Association M
	Actual	34,400	COR Employee Train
Pet Waste Bag			Distribute Commerce
Distribution	Taurah	50.000	Educate School Chil
	Target	56,000	FOG Brochures
	Actual		Hazardous Waste C
Neighborhood Clean-up	Target		IDDE Program Prior
Hazardous Waste	Actual	200	IDDE Program Visits
Collection	Target	215,000	Neighborhood Clea
EOC Prochuroc	Actual	200	Pet Waste Bag Distr
100 brochares	Target	215,000	Runoff Busters
Distribute Commercials	Actual		Sewer CCTV
	Target		Stormwater Sentrie
Write Articles for	Actual		Write Articles for N
Newsletters	Target		
COR Employee Training	Actual		
CON Linployee framing	Target		
Educate School	Actual	341	
Children	Target	20,000	
Civic Association	Actual		
Meetings	Target	215,000	

eetings ning cials dren ollection itizatio... n-up ibution ewslet...

Pet Waste Bag Distribution

Year	Actual	Estimated
2014	34,400.00	56,000.00
2015	66,670.00	56,000.00
2016	0.00	56,000.00
2017	0.00	56,000.00
2018	0.00	56,000.00
2019	0.00	56,000.00
2020	0.00	56,000.00
2021	0.00	56,000.00
2022	0.00	56,000.00
2023	0.00	56,000.00
2024	0.00	56,000.00
2025	0.00	56,000.00
Grand Total	101,070.00	672,000.00
Percentage	19	5.0%

Reporting

2015 Measure Data

Measure (Select Multiple)	Measure		Actual	Estimated	Percent	Actual (Cur	n.) Targe	ets (Cum.)	Percent	(Cum.)		
	Civic Association M	eetings	878	215,000	0.4%	878	4	30,000	0.2	%		
Civic Association Mantin	COR Employee Trai	ning	20	100	20.0%	20		100	20.0	0%		
Civic Association Meeting				0	omplet	ed in 20	15					
COR Employee Training					ompier	20						
Distribute Commercials	0	% 20%	40%	60%	80	0% 10	0%	120%	140%	160%	180%	200%
Educate School Children							1					
FOG Brochures	Civic Association Meetings	0.41%										
Hazardous Waste Collect	COR Employee Training	20	0.00%									
IDDE Program Prioritizati	Distribute Commercials	7.50%										
IDDE Program Visits												
Neighborhood Clean-up	Educate School Children	8.76%										
Pet Waste Bag Distributi	FOG Brochures	0.08%										
Runoff Busters	Hazardour Waste Collection	0.00%										
Sewer CCTV	Hazardous waste collection	0.00%										
Stormwater Sentries	Neighborhood Clean-up	0.01%										
Write Articles for Newsle	Pet Waste Bag Distribution							119.05%				
	Runoff Busters	0.00%										
	Sewer CCTV	0.00%										
	Stormwater Sentries	0.00%										
	Write Articles for Newsletters	2.79%										
	IDDE Program Prioritizations										175.00%	
	IDDE Program Visits	0.00%										

Monitoring

- Single sample maximums
- Geometric mean (if available)
- Trend analysis

DEQ Enterococcus Monitoring Results at Station BRK004.14						
Date Range	No. of Samples	Min Cts/100mL	Max Cts/100mL	Avg Cts/100mL	Inst. Max Exceedances	
2002-2012	61	N/A	N/A	478	74%	
2012-2013	11	25	2,000	639	73%	

Achieving a TMDL

- Current methodology
 - removal of bacteria without consideration of the source
- Chickahominy River and Tributaries Bacterial Implementation Plan (developed by DEQ)
 - Percent required bacterial load reductions
 - Wildlife direct and land based 77%
 - Livestock direct 100%
 - Agricultural land based 99%
 - Human direct 100%
 - Human and pet land based 99%

Reference: Chickahominy River and Tributaries Implementation Plan, MapTech, Inc. (2016)

Achieving a TMDL

Best Management Practice	Stage 1 Years 1-10	Stage 2 Years 11-20
Septic System Pump Outs (systems)	5,234	5,234
Septic Repairs, Replacements, Installations (systems)	177	0
Sewer Connections (systems)	245	
Pet waste pickup and composter program (%program)	75%	25%
Stormwater Treatment (acres)	300	5,400
Vegetated Buffers (linear feet)	10,000	10,000
Residential Education Program (%program)	100%	0%
Technical Assistance (FTE)	7.5	7.5

Reference: Chickahominy River and Tributaries Implementation Plan, MapTech, Inc. (2016)

Achieving a TMDL

- Current methodology
 - removal of bacteria without consideration of the source

Is there a better way?

2012 EPA Recreational WQ Criteria

- WQ Criteria developed based upon health risks
- Bacteria is easier to identify than other pathogens
- States have the option to adopt other scientifically defensible criteria

EPA Recommended Recreational Criteria

Indicator	Geometric Mean (cfu per 100 mL)	Statistical Threshold Value (cfu per 100 mL)
E. coli (freshwater)	126	410
Enterococci (marine and freshwater)	35	130

VA Water Quality Criteria

Indicator	Geometric Mean	Single Sample Maximum		
Freshwater (per 100 mL)				
E. coli	126	235		
Transition and Saltwater (per 100 mL)				
Enterococci	35	104		

Reference: Code of Virginia 9VAC25-260-170 (2010)

What makes people sick?

Figure 2-2. QMRA-based Probability of Gastrointestinal Illness from Ingestion of Water Containing Fresh Fecal Contamination from Various Sources (Soller et al. 2010b)

Microbial Source Tracking Technology

- Using BST to understand human and animal contributions and reductions
 - Presence or absence testing
 - Select one or more sources to test
- Prioritize removing sources that impact people
 - Reducing the probability of illness

Focused Approach to Implementation

Removing the stormwater BMPs

Chickahominy River and Tributaries Implementation Plan

Another Approach – San Diego, CA

CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION

Amendment to the Water Quality Control Plan for the San Diego Basin (9) to Incorporate Implementation Provisions for Indicator Bacteria Water Quality Objectives to Account for Loading from Natural Uncontrollable Sources Within the Context of a Total Maximum Daily Load

TECHNICAL REPORT May 14, 2008

- Identify and quantify bacteria sources
- Eliminate "controllable" anthropogenic sources
- Determine the remaining exceedances
- Remaining exceedances become allowable exceedances

Conclusion

- MS4 Action Plans are a first step to addressing bacteria on a large scale
- A variety of projects and programs are already being implemented
- Metrics need to be developed to track progress
- MST analysis may increase the precision of early implementation
- The future of implementation may change focus to MST

Stephanie Hanses shanses@brwncald.com

Mira Micin mmicin@brwncald.com